
TAME: A Specialized Speci�cation and Veri�cation System

for Timed Automata
�

Presented in the Work In Progress session at RTSS '96, Washington, DC, December 4-6, 1996

Myla Archer and Constance Heitmeyer

Code 5546, Naval Research Laboratory, Washington, DC 20375

farcher, heitmeyerg@itd.nrl.navy.mil

Abstract
Assuring the correctness of speci�cations of real-

time systems can involve signi�cant human e�ort. The
use of a mechanical theorem prover to encode such spec-
i�cations and to verify their properties could signi�-
cantly reduce this e�ort. A barrier to routinely encod-
ing and mechanically verifying speci�cations has been
the need �rst to master the speci�cation language and
logic of a general theorem proving system. Our ap-
proach to overcoming this barrier is to provide mechan-
ical support for producing speci�cations and verifying
proofs, specialized for particular mathematical models
and proof techniques. We are currently developing a
mechanical veri�cation system called TAME (Timed
Automata Modeling Environment) that provides this
specialized support using SRI's Prototype Veri�cation
System (PVS). Our system is intended to permit steps
in reasoning similar to those in hand proofs that use
model-speci�c techniques. TAME has recently been
used to detect errors in a realistic example.

1 Introduction
Researchers have proposed many innovative formal

methods for developing real-time systems [6]. Such
methods can give system developers and customers
greater con�dence that real-time systems satisfy their
requirements, especially their critical requirements.
However, applying formalmethods to practical systems
poses several challenging problems, e.g., how to make
formal descriptions and formal proofs understandable
to developers and how to design software tools in sup-
port of formal methods that are usable by developers.

To address these challenges, we are developing a
mechanized system called TAME (Timed Automata
Modeling Environment) for specifying and reasoning
about real-time systems. Our approach is to build a
family of formal reasoning tools customized for spec-
ifying and verifying systems represented in terms of
speci�c mathematical models. In [1], we describe how
we have built upon the mechanical proof system PVS
[14, 15] to support formal speci�cation and veri�ca-
tion of real-time systems modeled as Lynch-Vaandrager

�This work is funded by the O�ce of Naval Research.

(LV) timed automata [12, 11]. In [2], we describe how
application of the methods of [1], with some minor ex-
tensions, was successfully used to detect errors in the
speci�cation and correctness proofs of a hybrid system
modeled as an LV timed automaton. The tools and
methods used in [1] and [2] are part of TAME.

TAME provides mechanical assistance that allows
humans to specify and reason about real-time systems
in a direct manner. The use of TAME for speci�ca-
tion and veri�cation is usually quite straightforward,
because TAME provides both de�nitions for the stan-
dard parts together with a structure|in the form of a
template to be �lled in by the user|for specifying the
details of a given model and a set of proof steps suitable
for reasoning in that model. By focusing on a particu-
lar mathematical model, TAME allows a user to reason
within a specialized mathematical framework and avoid
having to master the base logic and the complete user
interface of the underlying proof system, PVS. By fur-
nishing proof steps designed for checking human-style
proofs, TAME facilitates highly useful, conceptual level
feedback when errors are discovered.

The next section provides more detail concerning
how TAME is built upon PVS. Section 3 describes our
experience with the use of TAME, and reports on its
current status. Section 4 describes our future plans
for TAME. Finally, the relationship of TAME to other
e�orts is discussed in Section 5.

2 Building on PVS

2.1 PVS

PVS (Prototype Veri�cation System) [15] is a speci-
�cation and veri�cation environment developed by SRI
International's Computer Science Laboratory. In dis-
tinction to other widely used proof systems, such as
HOL [4] and the Boyer-Moore theorem prover [3], PVS
supports both a highly expressive speci�cation language
and an interactive theorem prover in which most low-
level proof steps are automated. The system consists
of a speci�cation language, a parser, a type checker,
and an interactive proof checker. The PVS speci�ca-
tion language is based on a richly typed higher-order
logic that permits a type checker to catch a number

1



of semantic errors in speci�cations. The PVS prover
consists of a set of inference steps that can be used
to reduce a proof goal to simpler subgoals that can be
discharged automatically by the primitive proof steps
of the prover. The primitive proof steps incorporate
arithmetic and equality decision procedures, automatic
rewriting, and BDD-based boolean simpli�cation.

Speci�cations in PVS consist of one or more theories.
Each theory may be parameterized and may import
other theories. In proving theorems in PVS, users can
apply a sequence of primitive proof steps. In addition
to primitive proof steps, PVS supports more complex
proof steps called strategies, which can be invoked just
like any other proof step. Strategies may be de�ned
using primitive proof steps, applicative Lisp code, and
other strategies, and may be built-in or user-de�ned.

2.2 The Relationship of TAME to PVS
To support the mechanization of speci�cations in

a particular mathematical model, TAME provides a
template speci�cation corresponding to that model, to-
gether with a library of standard theories imported by
the template that represent the parts of the mathemat-
ical model that all speci�c instances have in common.
The associated specialized proof support is provided by
means of user-de�ned strategies that rely heavily upon
the standard theories and the template structure.

3 Current Status of TAME

3.1 Real-Time System Models Supported
Although we eventually plan to extend TAME to

other mathematical models, TAME currently provides
support for only one: the LV timed automata model.
We give some details of this model here, in order to
illustrate in Section 3.2 how TAME supports its use,
and by analogy, the use of any speci�c model.

An LV timed automaton is a very general automa-
ton, i.e., a labeled transition system. It need not be
�nite-state: for example, the state can contain real-
valued information, such as the current time and phys-
ical quantities that may be involved in a system, such
as water levels, railroad gate positions, vehicle acceler-
ations, and so on. The version of this model supported
in TAME can be described as follows:

A timed automaton A consists of �ve components:

� states(A), a (�nite or in�nite) set of states.
� start(A) � states(A), a nonempty (�nite or in�nite)

set of start states.
� A mapping now from states(A) to R

�0, the non-
negative real numbers.

� acts(A), a set of actions (or events), which include spe-
cial time-passage actions �(�t), where �t is a positive
real number, and non-time-passage actions, classi�ed
as input and output actions.

� steps(A) : states(A) � acts(A) ! states(A), a partial
function that de�nes the possible steps (i.e., transi-
tions).

Although in the general case, the transitions form
a relation rather than a function, we have successfully

reasoned about even nondeterministic timed automata
using this de�nition by representing transitions with
Hilbert's \choice" operator, �.

There are two standard techniques for reasoning
about properties of LV timed automata: proof by in-
duction of state invariants and proof that one automa-
ton simulates another. Ad hoc proofs concerning prop-
erties of execution sequences, such as timing properties,
are also used.

3.2 Support for LV Timed Automata

A Template For LV Timed Automata. Our tem-
plate for specifying LV timed automata in PVS pro-
vides a standard organization for an automaton de�ni-
tion. To de�ne a particular LV timed automaton, the
user supplies six items of information:

� declarations of the non-time actions,

� a type for the \basic state" (usually a record type)
representing the state variables,

� any arbitrary state predicate that restricts the set
of states (the default is true),

� the preconditions for all transitions,
� the e�ects of all transitions, and

� the set of start states.

In addition, the user may optionally supply

� declarations of important constants,

� an axiom listing any relations assumed among the
constants, and

� any additional declarations or axioms desired.

Proof Strategies for Reasoning About LV
Timed Automata. By providing an appropriately
designed set of PVS strategies, TAME supports me-
chanical reasoning about timed automata using proof
steps that mimic human proof steps.

One of the most important strategies provided by
TAME for the LV timed automata model is the in-
duction strategy that reduces induction proofs of state
invariants to the point where only the nontrivial base
and induction step cases remain. This strategy is based
on a standard parameterized automaton theory called
machine. Other strategies support the kind of reason-
ing typically needed in completing the proofs of these
cases. Some examples: to reason about the arithmetic
of time for time values that can be either non-negative
real values or 1, we have developed a special the-
ory (called time thy) and an associated simpli�cation
strategy (called TIME ETC SIMP); to simplify ap-
plication of previously proved state invariants, we pro-
vide a strategy called APPLY INV LEMMA.

In addition, TAME has some initial support for the
two other types of proofs that arise for timed automata,
namely proofs of simulation, which are as highly struc-
tured as induction proofs, and ad hoc proofs with no
particular �xed structure. For ad hoc proofs, we have
identi�ed a number of recurring types of reasoning that
are (at least in principle) possible to automate so as

2



to resemble the corresponding human-sized reasoning
step. We have implemented some of these, and have
designs for others that will require some enhancements
to PVS to implement. While a design for a simula-
tion proof analog of the induction strategy exists, its
implementation depends on improvements to PVS.

3.3 Current Usability of TAME

At present, using TAME requires the help of an ex-
pert in both deductive reasoning and PVS, even for
induction proofs of state invariants. Besides needing
some expertise to handle those invariants whose proof
requires some excursions outside the set of strategies
TAME provides, the user needs (among other things)
an appropriate variant of the induction strategy for his
or her application. The exact strategy variant needed
for a particular timed automaton can, in principle, be
compiled from certain details in the automaton spec-
i�cation. However, at present, this compilation must
be done by hand. A general purpose strategy in PVS
that probes for these details each time it is used could
probably be created also; an open question is whether
this would result in a signi�cant loss of e�ciency.

For an expert, TAME has proven to be a time-saver
in entering speci�cations and checking their properties,
and to provide useful feedback when errors are discov-
ered.

3.4 Experiences With the Use of TAME
We have applied TAME to example speci�cations

of real-time systems taken successively from [5], [10],
[8], and [18]. TAME was originally designed to encode
and to verify the speci�cations in [5]. The examples
in [10] and [8] helped us to identify additional features
needed in TAME to facilitate handling timed automata
derived from MMT automata [13] and timed automata
representing nondeterministic hybrid systems. The ex-
amples in [18] have been instructive exercises in iden-
tifying methods to support reasoning about nonlinear
real arithmetic in PVS.

Applying TAME to one of the examples [8] exposed
a number of speci�cation and proof errors. Most were
minor and easily �xed, but two were major. Our suc-
cess in both detecting and correcting errors in this ex-
ample demonstrates the utility of TAME. Errors were
discovered when either a proof or type checking failed.
Examining the context of the failure made it easy to
discover the nature and location of the error and (in
all but the most serious cases) to correct the error.

In every example we investigated, encoding new
speci�cations using the TAME template has proved to
be straightforward. The encoding of induction proofs
by hand of state invariants into PVS proofs based
on TAME's specialized strategies has resulted in PVS
proofs that closely resemble the original hand proofs in
a large number of cases. This number of cases should
increase when improvements to PVS allow us to cre-
ate smarter strategies. One example circumstance in
which the resemblance currently breaks down slightly

is when the state invariant to be proved has a complex
logical structure|e.g., when it involves an embedded
existential quanti�er.

4 Future Plans for TAME

Speci�cation and Proof Techniques To Be Sup-
ported. We plan to extend the capabilities of TAME
in two directions. First, we expect to extend the set
of specialized proof strategies for LV timed automata
to cover proofs of simulation and a larger set of ad hoc
proof steps. There are a number of such proof steps for
which we have a design that can clearly be automated,
but which cannot presently be automated in PVS. Cer-
tain planned enhancements to PVS will permit many
of these steps to be implemented as PVS strategies.
Second, we expect to add support for additional math-
ematical models that can be used to describe real-time
systems. The next model we intend to support will be
the SCR model [7].1

Enhancing PVS. PVS has several features that make
it a good foundation for building specialized support.
The expressiveness of its higher order logic and the ex-
tensiveness of its built-in decision procedures are two
examples. But, as indicated above, some of the proof
support we intend to supply with TAME requires en-
hancements to PVS. We have identi�ed several en-
hancements that will provide TAME with better proof
strategies. For example, appropriate assertion naming
and tracking features can be used in solve the prob-
lem of embedded quanti�ers mentioned in Section 3.4.
The developers of PVS have undertaken to implement
these enhancements, whose detailed requirements we
are continuing to re�ne.

Interface Issues. In our experience with using
TAME, many examples have arisen in which an inter-
face outside of PVS would be useful in simplifying the
interaction with PVS. Much simpli�cation is possible
because speci�cation and proof are being done in a nar-
row context. For example, an interface could automate
much of the creation of a speci�cation consistent with a
template, and enforce template conventions. An exam-
ple of the help an interface could provide for proofs was
mentioned in Section 3.3: compilation of appropriate
versions of the induction strategy. For the near future,
we will continue to study which services helpful to the
user can be provided within PVS, and which ones are
better provided outside of PVS.

5 Related Work
Other work exists that is similar in spirit to certain

aspects of ours. Reference [16] describes the develop-
ment of specialized theorem proving support based on
PVS for another formal system, the duration calculus.
Experience with making PVS itself more accessible to

1At present, timing has not been incorporated into this model.

However, there are plans to do so. Moreover, the TAME method-

ology can in the meantime be applied to non-timed automata.

3



industrial users is reported in [17]. Another example in
which the mechanization of hand proofs revealed errors
is [9].

Most other work to mechanically verify real-time
systems uses model checking. However, another e�ort
closely related to ours uses a theorem-proving system,
namely, the Larch Prover, to prove properties of LV
timed automata [10]. The proofs include both induc-
tion proofs of state invariants and simulation proofs
between automata. However, they do not include ad
hoc style proofs, nor do they involve specialized proof
techniques for timed automata.

References
[1] M. Archer and C. Heitmeyer. Mechanical veri�ca-

tion of timed automata: A case study. In Proc.
1996 IEEE Real-Time Technology and Applica-
tions Symp. (RTAS'96). IEEE Computer Society
Press, 1996.

[2] Myla Archer and Constance Heitmeyer. Verifying
hybrid systems modeled as timed automata: A
case study. To be presented at HART'97, Greno-
ble, France, March, 1997.

[3] R. Boyer and J Moore. A Computational Logic.
Academic Press, 1979.

[4] M. J. C. Gordon and T.F. Melham, editors. In-
troduction to HOL: A Theorem Proving Environ-
ment for Higher-Order Logic. Cambridge Univer-
sity Press, 1993.

[5] C. Heitmeyer and N. Lynch. The Generalized Rail-
road Crossing: A case study in formal veri�cation
of real-time systems. In Proc., Real-Time Systems
Symp., San Juan, Puerto Rico, December 1994.

[6] C. Heitmeyer and D. Mandrioli, editors. Formal
Methods for Real-Time Computing. Number 5 in
Trends in Software. John Wiley & Sons, 1996.

[7] Constance L. Heitmeyer, Ralph D. Je�ords, and
Bruce G. Labaw. Automated consistency check-
ing of requirements speci�cations. ACM Trans.
Software Eng. and Methodology, July 1996.

[8] Gunter Leeb and Nancy Lynch. Proving safety
properties of the Steam Boiler Controller: For-
mal methods for industrial applications: A case
study. In Jean-Raymond Abrial, Egon Boerger,
and Hans Langmaack, editors, Formal Methods
for Industrial Applications: Specifying and Pro-
gramming the Steam Boiler Control, volume 1165
of Lecture Notes in Computer Science. Springer-
Verlag, 1996.

[9] P. Lincoln and J. Rushby. The formal veri�cation
of an algorithm for interactive consistency under

a hybrid fault model. In C. Courcoubetis, edi-
tor, Computer Aided Veri�cation, CAV '93, vol-
ume 697 of Lecture Notes in Computer Science,
pages 292{304. Springer-Verlag, 1993.

[10] Victor Luchangco. Using simulation techniques
to prove timing properties. Master's thesis, Mas-
sachusetts Institute of Technology, June 1995.

[11] N. Lynch and F. Vaandrager. Forward and back-
ward simulations { Part II: Timing-based systems.
To appear in Information and Computation.

[12] N. Lynch and F. Vaandrager. Forward and back-
ward simulations for timing-based systems. In
Proc. of REX Workshop \Real-Time: Theory in
Practice", volume 600 of Lecture Notes in Com-
puter Science, pages 397{446. Springer-Verlag,
1991.

[13] M. Merritt, F. Modugno, and M. R. Tuttle. Time
constrained automata. In J. C. M. Baeten and
J. F. Goote, editors, CONCUR'91: 2nd Intern.
Conference on Concurrency Theory, volume 527
of Lecture Notes in Computer Science, pages 408{
423. Springer-Verlag, 1991.

[14] Sam Owre, John Rushby, Natarajan Shankar, and
Friedrich von Henke. Formal veri�cation for fault-
tolerant architectures: Prolegomena to the design
of PVS. IEEE Transactions on Software Engineer-
ing, 21(2):107{125, February 1995.

[15] N. Shankar, S. Owre, and J. Rushby. The PVS
proof checker: A reference manual. Technical
report, Computer Science Lab, SRI Intl., Menlo
Park, CA, 1993.

[16] J. Skakkebaek and N. Shankar. Towards a du-
ration calculus proof assistant in PVS. In Third
Intern. School and Symp. on Formal Techniques
in Real Time and Fault Tolerant Systems, Lecture
Notes in Computer Science 863. Springer-Verlag,
1994.

[17] M. K. Srivas and S. P. Miller. Formal veri�cation
of a commercial microprocessor. Technical Report
SRI-CSL-95-04, Computer Science Lab, SRI Intl.,
Menlo Park, CA, 1995.

[18] Henri Weinberg. Correctness of vehicle control
systems: A case study. Master's thesis, Mas-
sachusetts Institute of Technology, February 1996.

4


